Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory.
نویسندگان
چکیده
How the memory systems centered on the hippocampus and dorsal striatum interact to support behavior remains controversial. We used functional MRI while people learned the locations of objects by collecting and replacing them over multiple trials within a virtual environment comprising a landmark, a circular boundary, and distant cues for orientation. The relative location of landmark and boundary was occasionally changed, with specific objects paired with one or other cue, allowing dissociation of learning and performance relative to either cue. Right posterior hippocampal activation reflected learning and remembering of boundary-related locations, whereas right dorsal striatal activation reflected learning and remembering of landmark-related locations. Within the right hippocampus, anterior processing of environmental change (spatial novelty) was dissociated from posterior processing of location. Behavioral studies show that landmark-related learning obeys associative reinforcement, whereas boundary-related learning is incidental [Doeller CF, Burgess N (2008) Proc Natl Acad Sci USA 105:5909-5914]. The distinct incidental hippocampal processing of boundaries is suggestive of a "geometric module" or "cognitive map" and may explain the hippocampal support of incidental/observational learning in "declarative" or "episodic" memory versus the striatal support of trial-and-error learning in "procedural" memory. Finally, the hippocampal and striatal systems appear to combine "bottom-up," simply influencing behavior proportional to their activations, without direct interaction, with "top-down" ventromedial prefrontal involvement when both are similarly active.
منابع مشابه
Spatial cognition and the brain.
Recent advances in the understanding of spatial cognition are reviewed, focusing on memory for locations in large-scale space and on those advances inspired by single-unit recording and lesion studies in animals. Spatial memory appears to be supported by multiple parallel representations, including egocentric and allocentric representations, and those updated to accommodate self-motion. The eff...
متن کاملThe role of landmarks and boundaries in the development of spatial memory.
It has been suggested that learning an object's location relative to (1) intramaze landmarks and (2) local boundaries is supported by parallel striatal and hippocampal systems, both of which rely upon input from a third system for orientation. However, little is known about the developmental trajectories of these systems' contributions to spatial learning. The present study tested 5- and 7-year...
متن کاملAssessment of the role of NMDA receptors located in hippocampal CA1 area on the effects of oral morphine dependency on spatial learning and memory in rat
Introduction: It has been reported that oral morphine dependency facilitated formation of spatial learning and memory. In the present study the role of NMDA receptors located in hippocampal CA1 area of morphine dependent rats was studied. Methods: Male rats were divided into 4 groups. Two cannulae were stereotaxically implanted bilaterally into the hippocampal CA1 area. After 5 days recover...
متن کاملEnhancing effect of Tiliacora triandra leaves extract on spatial learning, memory and learning flexibility as well as hippocampal choline acetyltransferase activity in mice
Objective: The present study investigates the effect of Tiliacora triandra leaf extract on spatial learning, memory, and learning flexibility as well as hippocampal choline acetyltransferase (ChAT) activity in mice. Materials and Methods: Thirty male ICR mice were randomly divided into three groups including 10% Tween 80, T. triandra 300 mg/kg and T. triandra 600 mg/kg. All administrations wer...
متن کاملAssessment of the effect of nitric oxide within hippocampal CA1 area on spatial learning and memory in morphine dependent rats
Introduction: There are evidences showing the role of nitric oxide in the opiate reward properties. The role of nitric oxide signaling pathway as an intracellular mechanism on augmentation of long term potentiation in hippocampal CA1 area of rats is also confirmed. It has been also reported that oral morphine dependence facilitates formation of spatial learning and memory via activation of N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 15 شماره
صفحات -
تاریخ انتشار 2008